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1. INTRODUCTION

The Yee algorithm [1] for the Maxwell equations requires that the time atefbe
bounded in order to avoid numerical instability. In [2], it was stated that the scheme is sta
under the conditionat < Axinone dimensionandt < 1/1/(1/Ax)2 + (1/Ay)2intwo
dimensions.

In this paper, we show that the Yee scheme is not stable wea Ax for the one-
dimensional case andt = 1/\/(1/Ax)2 + (1/Ay)? for the two-dimensional case. This
means that one cannot take the maximamreferred to as the “magic time step” in [2].
Remis [5] found similar results by studying the eigenvalues of the iteration matrix for
specific boundary condition. However, in this paper, the analysis is carried out using
Kreiss matrix theorem [4] for the case with a periodic boundary condition.

We consider the fully discrete Yee scheme applied to the dimensionless form of Maxwe
equations in free space. Fourier transformation of the scheme gives us a linear system
an amplification matrixQ. In order to analyze the stability of the scheme, we investigat
the properties of the amplification matrix.

In Section 2, we first examine the stability of the one-dimensional scheme. Itis shown t
the scheme with the conditiont > Ax does not satisfy the von Neumann condition [4],
which implies that one of the eigenvalues of the amplification matrix is greater than o
in magnitude and so the scheme is unstable. For the sase Ax, the von Neumann
condition becomes a necessary and sufficient condition for the stability due to the fact f
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the norm of thenth power ofQ is uniformly bounded am grows. Finally, we analyze the
caseAt = Ax, which is our main concern in this paper. This satisfies the von Neuma
condition. However, the norm of theth power on grows linearly withn, so that the
numerical scheme is unstable for this case.

In Section 3, we extend the same stability analysis to the two-dimensional scheme
detailed proof is shown only for the casg = 1/1/(1/Ax)2 + (1/Ay)2.

We provide a numerical example of the instability of the magic time step for a on
dimensional problem in Section 4 and the conclusion is in the last section.

2. THE ONE-DIMENSIONAL CASE

The non-dimensional Maxwell equations, describing the dynamics of waves in ol
dimensional free space, are written as

oH,  9E,
o @
0E, 9H,
ot ax

whereH, and E, are the magnetic field in thg direction and the electric field in the
direction, respectively.
The Yee scheme applied to the above equations is

ntd nti At n+1 n+1
-l = S (e )
2
E, |1 En_At Hn+% Hn+% @)
o =l = S (Pl - i)

Consider the sinusoidal-traveling-wave solution of (1) as numerically evaluated at the
crete space—time poilk;, tn),

Hy|.

i = Hy(GAX, nAD = Hy(x}, th) = Hjw)e"™

. . 3)
Ez{’j‘ = E,(j AX, NAL) = Ex(Xj, ta) = EN(w)d ™™,
wherew is the wavenumber.
Substituting (3) into the Yee scheme (2) and canceling the common terms, we obtain

system

ﬁ;*g 1-42sirf§ 2iasing |3|§+% @
= , 4
En+l 2iasing 1 En
whereix = At/Ax andé = wAXx. Thus the amplification matriQ is given by
1—40? 2ia )
2ia 1
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witha = 2 sin%. The corresponding eigenvalues of the ma@iare

pi2=1—20a%+2\/a4 - a2 (6)

A necessary condition for the stability is that all the eigenvalues of the amplificatic
matrix Q must be less than or equal to one in magnitude (the von Neumann condition [
First, assume that > 1. By letting sin&/2) = 1, we havex? > 1. Then one of the

eigenvalues oQ is greater than one in magnitude; i.e.,

luzl = |1 — 20% — 2v/a® — a?| > 1. @)

Thus the scheme is unstable for 1.
Next, assume that

O<A<l

Then we have
ln12l? = (1—20%% + 4’1 —a®) =1, (8)

so that the von Neumann condition is satisfied. In general, the von Neumann condit
is only a necessary condition but not a suffcient condition. So it does not guarantee |
the scheme is stable for9 i < 1. However, in the special case tatcan be uniformly
diagonalized, the von Neumann condition is sufficient [4].

Here we show that the scheme is stable for @ < 1, but not for the casg = 1. We
separately investigate the two different cases.

1. Suppose & 1 < 1. Define the diagonalizélr by
T [,3+ia —B +ia]

1 1
such that
lel{l B—ial
28|-1 B+ia]
and

T7'QT = A = diag(p1. p2).
where = Va2 — a/a. Let T* be the hermitian matrix of andoe(T* - T) be the spectral
radius of T* - T. Then the norms of andT ! are bounded as the following:
ITIZ = p(T*-T) =2+ 2le| < 4,

1+ve?2 1
21-a?) 21—’

IT 5 =pT Y T H =

Thus

Q"2 = ITA"TY,
<ITlz2- 1A™2- IT 742
<C )

for some constart. Therefore, the Yee scheme is stable for the case\0< 1.
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2. Suppose. = 1. We show that, in this case, the Yee scheme is unstablé etr.
Then the amplification matrix can be written as

. [-3 2 _2 2
Q= [Zi 1} ==+ [Zi 2} =-I+B (10)

SinceB" = 0 forn > 2, we have

Qn _ zn: (;)Bm(—l yn-m

m=0
= (=D)"I + nB(=D" I
= (=D"(I —nB)

_ (_1)n[1+2n —2ni ]

—2ni 1-—2n (11)

Each of the entries of the matr@" grows linearly withn. Therefore, the norm ad" is of
ordern, which cannot be uniformly bounded.

3. THE TWO-DIMENSIONAL CASE

Here, we examine the stability criteria of the Yee scheme in two dimensions. The dim
sionless form of Maxwell’s equations in two-dimensional free space is

dHx  0E;
ot~ dy
oH oE
= ax (12)
JE; 9Hy 9Hx
at  ax ay
whereHy, Hy, andE; are the field components in tixe y, andz directions.
Applying the Yee scheme to the equations above, we have
nd n+l At n+1 n+1
Helfies = H[) 2y = —A—y(Ez|jqk+1 —E[}})
n+3 n+i At n+1 n+1
HY‘j+;k - Hy’j+;k - H(Ez‘j+l,k - Ez{j,k ) 13)
n+1 n At nt+l ol
Erlj\ — Edlj = AX<Hy;j+;k - Hy|]._;k>

At n+1 n+1
Ty (HX\j,ki; - HX|j,k2;>-

Consider a simple wave solution of (12) at the discrete space—time(@E@inyx, t»),
Hyll o = Hx(j AX, KAY, NAL) = Hy (X}, Vi, th) = HJ(wx, wy)e %0
Hyl"\ = Hy(j AX, KAY, NAt) = Hy(Xj, Vi th) = H(wx, wy)d X Fm%0 - (14)
Exl} = E2(j AX, KAY, NAD) = E5(X}, Yk, tn) = EJ(wy, wy)e @itk
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Substituting the solution (14) into the Yee scheme (13) gives us the system

~ 3 ~ 1
M 1-402 daxay —2ay]| |[AY?
AVE| = | ey 1—402 2iae | |A0VE], (15)
En+1 —2ioy 2iay 1 En
z z
where
- &x &y
Otx=/\xSIn§, ozyz)uysmE
with

Ax = At/AX, Ay = At/Ay and & = wyAX, & = wyAy.
Then the amplification matri is

1- 40132, dayoy  —2iay
dayay 1—4a2 2iay |- (16)
—2iay 2i oy 1

Defininga = o2 + a§, the eigenvalues dﬁ are

u1=1 prz=1-20+2vo?—a. a7

One can easily show that the scheme is unstableZfer )\5 > 1 using the same analysis as
in the one-dimensional case. On the other hand, the scheme is stable when9 A§ <1
The proof is omitted.

Here, we will only show a detailed proof for the cage+ A3 = 1. With &, = &y =7
andiy = Ay = 1/+/2, the amplification matrix becomes

-1 2 —iy2
0= 2 —1  iV?2
—iv2 iVv2 1
Let P be defined as
P13
P=|3 1 -3
0 —iv2 0

SO thatQ is transformed to the Jordan canonical form

X 10 O
PQP=1]0 -1 1
0 0 -1
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Then

1 0 0
Q"=P|0 (-D" (D" In|P7L
0 0 (-

Here, | Q" is unbounded whem — co. Therefore, the scheme is unstable under th
conditionA2 + A2 = 1;i.e., At = 1/1/(1/AX)2 + (1/Ay)2.

4. NUMERICAL RESULTS

We provide a numerical example demonstrating the instability of the numerical sche
with the conditionAt = Ax in one dimension. Consider the exact solution of Maxwell’s
equations (1) given by

E(x,t) = H(X, t) = sin(x + t).

We choose two different sets of grids such that, for even intsiger

2ri
i=——, 1i=012...,N, 18
T NT1 49
and
o
x="0 i=012...N-1 (19)

We then apply the Yee scheme with the magic time atep= Ax and the initial data

N
E? = sin(x) + 8 cos(ixi> (20)
Hilﬁ/z = sin(Xi;+1/2 + 0.5At). (21)

Here we introduce the perturbed initial dd&& for the electric fieldE by adding the term
8 cos(%xi) with § <« 1. On the other hand, the exact solution is considered initial data f
the magnetic fieldd such asH/2 in (21).

We measure the error between the numerical soluBbrand the exact solutiok, of
the electric field in the_,-norm defined by

e= [Aax-Y BN~ E.x. )]
i

In Table I, the errors on the two different sets of grids at ttrae 20r are compared. With

the gridsx; = % i =0,1,..., N — 1, the error grows linearly witiN for fixed terminal

time. SinceE%(w = +N/2) # 0 due to the perturbation term:os(%xi) and the variable
£ = wAX = 7, we haveE™(w = £N/2) being amplified byQ" as shown in (11). On the
other hand, taking the grids = (NZ”T'D i=0,1,....N,wehave =wAx=15 . &5 <7,
so that the instability is not expected for any finNefor this case.
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TABLE |
L, Error of E for Various é's on Various Sets of Grids at Timet = 20r

Xi:(,\%'il),i:O,l,...,N x,»:%i,izo,]_,“.’[\j_l

N 8 =1E-3 s =1.E-9 8 = 1.E-15 8 =1E-3 8 =1E-9 8 = 1.E-15

8 0.4896E-02 0.4896E-08 0.1288E-13 0.3985E+00 0.3985E-06 0.4446E-12

16 0.4885E-02 0.4885E-08 0.8921E-14 0.7996E+00 0.7996E-06 0.7549E-12
32 0.4881E-02 0.4881E-08 0.8826E-14 0.1601E+01 0.1601E-05 0.1554E-11
64 0.4880E-02 0.4880E-08 0.9609E-14 0.3206E+01 0.3206E-05 0.3028E-11
128 0.4879E-02 0.4879E-08 0.1016E-13 0.6414E+01 0.6414E-05 0.6151E-11
256 0.4879E-02 0.4879E-08 0.1034E-13 0.1283E+02 0.1283E-04 0.1234E-10
512 0.4879E-02 0.4879E-08 0.1037E-13 0.2566E+02 0.2566E-04 0.2465E-10
1024 0.4879E-02 0.4879E-08 0.1025E-13 0.5133E+02 0.5133E-04 0.4898E-10
2048 0.4879E-02 0.4879E-08 0.1031E-13 0.1026E+03 0.1026E-03 0.9744E-10
4096 0.4879E-02 0.4879E-08 0.1043E-13 0.2053E+03 0.2053E-03 0.1967E-09

5. CONCLUSION

We have proven that the Yee scheme with the magic time step is not stable. In a |
computation, one always expects perturbations from either measurement errors in the
or roundoff errors. From the numerical results for the one-dimensional problem, the lin
instability for the case of the magic time step is detected when a small perturbatior
introduced in such a way as shown in this paper. Therefore, we conclude that the m:

time step is not suitable for the Yee scheme since the solution may diverge under a ce
small perturbation.
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